
World Transactions on Engineering and Technology Education  2003 UICEE
Vol.2, No.2, 2003

 331

INTRODUCTION

Because of the possibility of transmission errors and the need to
regulate the arrival rate of data to the receiver, synchronisation
and interfacing techniques alone are not sufficient for error-free
data transmission. As such, it is necessary to impose a layer of
control in each communicating device to provide functions
such as flow control, error detection and error control. This
layer of control is known as a data link control protocol and the
transmission medium between systems is called the data link.
For effective serial data communication, two directly connected
stations require: frame synchronisation; flow control; error
control; addressing and link management [1]. A data link
protocol must satisfy all of the above requirements. Several
data link protocols have been proposed and are currently in use
[2][3]. The following discussion will concentrate on the High-
level Data Link Control (HDLC) protocol [4].

A developed program in Java to show insight into how HDLC
can be used to perform data transfer on a serial basis and to
analyse HDLC data packets being transferred from one machine
to another is presented in this article. It demonstrates the
exchange of I-Frames, S-Frames and U-Frames between two end
stations, during initialisation, data exchange and disconnection, as
well as how bit stuffing is performed. In an end station, the
transmission and reception of data packets are displayed in
separate windows in a binary format, as well as in a hexadecimal
format. Along with strings of zeros and ones, readable statements
are also inserted to describe the purpose of a stream of data that is
being sent or received. In order to see all of the frames involved
in the data transfer of a single byte of character, the user can
utilise the live mode where, as soon as a key is pressed, the
program constructs all of the necessary packets and sends it to
the other end. This practical approach is different from that of
the theoretical approach, which only shows the different layers
of a protocol without actually using or implementing it.

HDLC PROTOCOL

HDLC, a layer 2 protocol of the OSI model, is a popular ISO-
standard, bit-oriented, link layer protocol [5][6]. This protocol
was derived from Synchronous Data Link Control (SDLC) and
specifies an encapsulation method of data on synchronous serial
data links. The HDLC protocol defines three communicating
station types: primary, secondary and combined; two link
configurations: unbalanced and balanced; and three modes of
data transfer: Normal Response Mode (NRM), Asynchronous
Balanced Mode (ABM), and Asynchronous Response Mode
(ARM) [6].

The HDLC operation consists of the exchange of I-Frames, S-
Frames and U-Frames between the two end stations. There are
three phases involved in the HDLC operation [7][8]. These are
described below:

• Data Link Initialisation: Initialisation may be requested by

any station using any of the six set modes of the U-Frame.
This set mode initialisation serves three purposes, namely:

- It signals the other side that initialisation is requested.
- It specifies the mode of operation (NRM, ABM and

ARM).
- It specifies whether the control byte uses a 3-bit or 7-

bit sequence number. If the receiving station accepts
this request, then it acknowledges this by transmitting
an Unnumbered Acknowledgement (UA) frame to the
transmitting station and establishing a logical
connection between the end stations. If the request is
rejected, then a Disconnect Mode (DM) frame is sent.

• Data Exchange: After the logical link is established

between the two stations, both sides may begin to send
user data using I-Frames, starting with sequence number 0.

Java program implementation of HDLC protocol for serial data communication

Faisal Kaleem, Kang K. Yen & Amaury A. Caballero

Florida International University
Miami, United States of America

ABSTRACT: This paper presents a Graphic User Interface (GUI)-based implementation of serial data communication using High-
level Data Link Control (HDLC) protocol. This Java-based program has been implemented for educating students in order to provide
them with insights into how HDLC can be utilised to perform a data transfer on a serial basis. The program can be used to analyse
HDLC data packets being transferred from one machine to another. This practical approach is totally different from the theoretical
approach, whereby students only read the book and try to understand the different layers of a protocol without actually using or
implementing the protocol.

 332

The N(S) and N(R) are numbered sequentially using
modulo 8 or 128 depending on whether 3- or 7-bit
sequencing is used. N(S) contains the current frame
number to be sent by a station, while N(R) contains the
next frame that a receiver expects from the other station
during a data transfer.
Sometimes S-frames are also used for flow and error
control. The Receive Ready frame (RR) in S-Frame
acknowledges the last frame received by indicating the next
expected I-Frame, while Receive Not Ready (RNR) not
only acknowledges the received I-Frame, but also informs
the transmitting station to halt the transmission momentarily.
In the meantime, the entity that receives the RNR may poll
the other station to find out whether it is ready to receive
the next frame by transmitting an RR frame with a P bit
and the expected frame sequence number. If the receiver is
still not ready, it again issues the RNR frame; otherwise, it
issues an RR frame indicating its willingness to accept the
next frame and the data exchange resumes again.

• Disconnecting the Link: Any HDLC station can initiate a
disconnect mode by sending a DISC (disconnect) frame.
The receiver responds with a UA frame. At this time, the
link is logically disconnected and any outstanding I-Frame
may be lost.

IMPLEMENTATION

HDLCDemo is a program developed in Java to simulate serial
data communication between two end stations using HDLC
protocol. The program also utilises the powerful communication
Application Programming Interface (API) from Sun
MicroSystems to perform serial communications between two
stations connected through serial ports via a null modem [9].
The steps needed to executive HDLCDemo, with regard to
installing the communication API, are as follows:

• Download and install the API for the operating system
from the Sun MicroSystems Website;

• Unzip the file javacomm20-win32.zip in the C: drive and
JDK is installed in C:\jdk1.4;

• Copy win32com.dll to the <JDK>\bin directory;
• Copy comm..jar to the <JDK>\lib directory;
• Copy javax.comm.properties to the <JDK>\lib directory;
• Add comm..jar to the classpath;
• Reboot the system.

Some of the features of HDLCDemo will work without any
hardware set-up, but to use the two-way communications
feature, a null modem cable is required. The cable can either be
looped back between the serial ports on a single machine or
used to connect the serial ports on two different machines.

All of the Java files for HDLCDemo reside in a single
directory. This makes the program very easy to build. In order
to compile HDLCDemo, one requires a single command.

PROGRAM DESCRIPTION

Figure 1 depicts the HDLC Demo window. The main window
contains a configuration panel that lets the user select the serial
port parameters. These parameters must be selected before the
user opens the port for active transfer. The program
automatically identifies any available serial port on the system.
The user can then select any port from the list. The open port
and closed port buttons are used to open and close the selected
serial port. The send text command is used to send any text the
user has typed to the other station on a semi-live basis.

The main window, excluding the configuration panel, can be
divided into two main sections: the TX section for transmission
and an RX section to receive data packets. Both the TX and RX

Figure 1: HDLC demo window and link establishment.

 333

sections have two subsections: one to display the original
information in a readable format and the other to show
the HDLC operations by displaying frames in a binary
and a hexadecimal format, as depicted in Figure 1. The
only editable window that lets the user type and transmit the
text is the TX window. The rest of the windows are non-
editable.

The program also uses some of the function keys (F1-F5) to
perform certain actions. None of the function keys work if the
port is not opened. The following explains what the function
keys do:

F1: Initialises the link and sets the mode of operation to

Asynchronous Balanced Mode (SABM).
F2: Initialises the link and sets the mode of operation to

Normal Response Mode (SNRM).
F3: Initialises the link and sets the mode of operation to

Asynchronous Response Mode (SARM).
F4: Toggles between the live and semi-live modes. In the live

mode, whatever the user is typing on the transmitting side
is received straightaway by the receiver. The user does not
have to press the send key to transmit the text to the other
side. In the semi-live mode, after typing the text, the user
has to press the send text button to send the data to the
other side.

F5: Toggles between busy and non-busy conditions. Pressing
F5 indicates to the transmission side that the receiver is
not ready to receive any new frame by sending an RNR
command. Pressing F5 again generates the RR frame,
indicating its willingness to receive the next frame in the
sequence.

The following steps establish the communication and data
exchange:

• Execute the program on both stations (assuming that the

above-mentioned requirements have been fulfilled).
• Select the serial parameters and press the open port button

on the configuration panel on both stations. Data exchange
cannot be performed by just opening the port; doing so
will generate an error message.

• Initiate a data transfer from any station by pressing
the function keys (F1-F3). Press F1 key to establish
SABM 3 bit sequence mode; this will initialise all
the sequence counters and indicates that the link between
the two stations has been established (see Figure 1
again).

• Select the mode of transfer, live or semi-live, by pressing
the F4 key. As described above, the live mode transmits
the data as the user types, while the semi-live mode
requires the user to press the send text button to transmit
the information.

• Assuming live mode, start typing; the construction of the
packets in binary and hexadecimal format in both the TX
and the RX windows of the transmitting station and the
receiving station, respectively, can be seen. This is shown
in Figures 2 and 3.

It should be noted that if the link is established and the system
detects inactivity for 10 seconds on any station, it sends an RR
frame. The program does this three times and, after that, it
assumes some problem in the link and sends a DISC command
indicating a logical disconnection. At this time, both systems
close their ports.

The following examples are some of the snapshots of raw data
that are transferred from one side to the other.

Initialisation TX Side:
Initialisation Using SABM mode
U Control Byte 01011011 [5B]
TX CRC 0000101100000000 [0B00]
TX FRAME
011111101111111101011011000010110000000001111110
[7EFF5B0B007E]
TX FRAME BITSTUFFED
0111111011111011101011011000010110000000001111110
[FDF75B0B007E]

Frame received at RX Side:
RX FRAME WITH BITSTUFFING
0111111011111011101011011000010110000000001111110
[FDF75B0B007E]
RX FRAME W/O BITSTUFFING
11111111010110110000101100000000 [FF5B0B00]
RX CRC 0000101100000000 [0B00]
CALCULATED CRC 0000101100000000 [0B00]

JAVA CLASSES IMPLEMENTED

The developed program, HDLCDemo, is comprised of four
main Java classes, as listed below:

• HDLCDemo: This class executes the main program and is

responsible for the Graphical User Interface (GUI).
• Serial Connection: a comprehensive class that is

responsible for setting the serial parameters, opening the
port and transmitting and receiving serial data wrapped in
HDLC frame.

• CRC16: This class calculates the 16-bit CCITT-CRC-
based check sum for error identification and error
correction.

• HDLC: This is the main class that is responsible for
controlling all HDLC-based operations involving
initialisation, frame construction, frame reconstruction at
the receiving end, maintaining the N(S) and N(R)
sequence numbers, bit stuffing and other things necessary
to the HDLC protocols.

CONCLUSIONS

HDLCDemo has been developed as a Java-based program that
simulates the HDLC operations, excepting the functions of
frame rejection and recovery process. It is believed that this
implementation provides an environment to visualise the insight
about how HDLC operates. The display of the binary and the
hexadecimal-based frame in the window is a powerful feature,
which can be used to demonstrate the operations of the HDLC
frames. In its current form, the HDLC class contains all of the
necessary methods for possible extensions.

REFERENCES

1. Stallings, W., Data and Computer Communications.

Englewood Cliffs: Prentice-Hall (2000).
2. Held, G., Understanding Data Communications. New

York: John Wiley & Sons (2000).
3. Forouzan, B.A., TCP/IP, Protocol Suite. New York:

McGraw-Hill (2000).

 334

4. Bux, W., Kuemmerle, K. and Truong, H.L., HDLC
performance: comparison of normal response mode and
asynchronous balanced mode of operation. Proc. NTC
Conf. Rec. National Conf. on Telecommunications in a
New Decade, 1, 1-15 (2000).

5. Bochmann, G.V. and Chung, R.J., Formalized
specification of HDLC classes of procedures. Proc. Conf.
Rec. of National Telecommunication Conf., 1, 03A.2.1-
03A.2.11 (1977).

6. Sczittnick, M. and Uhl, T., Aggregation of systems
with HDLC protocol. European Trans. on

Telecommunications and Related Technologies, 4, 1, 107-
112 (1993).

7. Bryant, S.F. and Johnson, K.E., Protocol simulation using
SDL tools. Proc. 6th IEE Inter. Conf. on Software Engng.
for Telecommunication Switching Systems, 259, 52-56
(1986).

8. Goyal, R., Lai, S., Jain, R. and Durresi, A., Laboratories
for data communications and computer networks. Proc. 28th
Annual Frontiers in Educ. Conf., 3, 1113-1118 (1998).

9. Sun MicroSystems, Java Communication API,
www.sun.com

Figure 2: Sending data from one station.

Figure 3: Receiving data at another station.

	Java program implementation of HDLC protocol for serial data communication

